CYCLOCONDENSATION OF 3(2H)-BENZOFURANONE

Jan Bergman and Börje Egestad

Department of Organic Chemistry, Royal Institute of Technology,

S-100 44 Stockholm 70, Sweden

In 1911 Fries and Pfaffendorf¹ reported that 3-acetoxy-2,3'-bibenzofuranyl ($\underline{1a}$), an acetylated condensation product from 3(2H)-benzofuranone ($\underline{2a}$), when treated with HCl in HOAc (100 °C/8h, sealed tube) was transformed into a high-melting pale orange-red compound, with the composition ($C_8H_4O_n$). The German workers proposed structure $\underline{3a}$ (s-tetrakis-2:3-benzofuranocyclooctatetraen) for this compound on the basis of elemental analysis and mode of formation.

Several years later Baker and Banks² suggested, on the basis of a molecular weight determination (Rast) that products of this type should have the trimeric structure $\underline{4}$ rather than the tetrameric structure $\underline{3}$. To account for this they suggested, quite reasonably, that the starting material ($\underline{1}$) underwent deacetylation and retro-aldolization followed by a cyclocondensation of the formed 3(2H)-benzofuranone with compound 1.

We have now repeated these condensations and determined the molecular weights by high-resolution MS³ of the products obtained and studied the NMR-spectrum (270 MHz)⁴ of the condensation product derived from compound <u>1b</u>, which (in agreement with the original proposal) gave conclusive evidence for the general structure <u>3</u> for these products.⁵ No trace of the trimeric compounds <u>4</u> could be detected in the cyclocondensation of compound <u>1a</u> or <u>1b</u>.

The structure $\underline{4a}$ has also been assigned to a yellow compound obtained in low yield by refluxing 3(2H)-benzofuranone ($\underline{2a}$) in pyridine. However, this yellow compound ($C_{32}H_{18}O_6$, $M^+=498.1103$) was identical with a product formed in traces along with compound $\underline{3a}$. By

changing the condition for the reaction from sealed tube at 100 $^{\rm o}$ C to reflux at atomspheric pressure this yellow compound was the major solid product formed (albeit still in low yield). This compound has now been shown to have structure $\underline{\bf 5}$, by X-ray diffraction analysis.

By treating 3(2H)-benzofuranone $(\underline{2a})^7$ with HCl in HOAc (100 °C/8h, sealed tube) it was possible to obtain the novel trimeric compound s-tris-2:3-benzofuranobenzene $(\underline{4a})$ and compound $\underline{3a}$ in the ratio 2:1, together with small amounts of compound $\underline{5}$. This mixture could be separated by gradient sublimation (330 °C/10 mm Hg).

The trimeric structure 4 was confirmed by an independent synthesis starting with the appropriate 1,3,5-triphenoxybenzenes (6).8 (For related syntheses of dibenzofurans, see ref. 9.)

Acknowledgement: We thank Dr. H.-E. Högberg, Stockholm, for his interest in this work and Dr. O. Wennerström, Göteborg, for recording the 270 MHz NMR spectrum.

REFERENCES AND NOTES

- 1. K. Fries and W. Pfaffendorf, Berichte 44, 114 (1911).
- 2. (a) Baker and Banks^{2b} condensed compound $\underline{1b}$ and claimed that the product had the composition $^{\text{C}}_{27}^{\text{H}}_{18}^{\text{O}}_{3}$, which is in agreement with compound $\underline{4b}$.
 - (b) W. Baker and R. Banks, J. Chem. Soc., 279 (1939).
- 3. (a) s-Tetrakis-2:3-benzofuranocyclooctatetraen, ($\underline{3a}$): M.p. 383 °C (differential scanning calorimetry). High resolution MS gave M⁺=464.1041 (calculated 464.1048 for $^{\rm C}_{32}{}^{\rm H}_{16}{}^{\rm O}_4$. MS: 466 (7), 465 (35), 464 (100), 436 (10), 435 (28), 232.5 (10), 232 (27), 217 (8). Only peaks higher than 5% of the base peak are listed.
 - (b) s-Tetrakis-2:3-(5-methylbenzofurano)-cyclooctatetraen, ($\underline{3b}$): M.p. 428 °C (differential scanning calorimetry). High resolution MS gave M⁺=520.1677 (calculated 520.1675 for $^{\circ}_{36}^{\circ}_{24}^{\circ}_{4}^{\circ}_{4}^{\circ}$). MS: 522 (9), 521 (41), 520 (100), 491 (7), 477 (7), 260.5 (9), 260 (28), 238 (6). Only peaks higher than 5% of the base peak are listed.
- 4. NMR (270 MHz, CDC1₃): δ = 2.48 (12H, s, ArCH₃), 7.18 (4H, q, H_B), 7.47 (4H, d, H_A) and 7.59 (4H, d, H_C). J_{AB} = 8.5 Hz, J_{BC} = 1.5 Hz.

- 5. (a) The formation of 8-membered rings in cyclocondensations has been recorded before. 5b
 (b) H. Erdtman and H.-E. Högberg, Chem. Commun., 773 (1968). H.-E. Högberg,
 Acta Chem. Scand. 26, 309 (1972).
- 6. J.N. Chatterjea, J. Ind. Chem. Soc. 36, 69 (1959).
- 7. (a) The 3(2H)-benzofuranone was prepared according to Higginbotham and Stephen 7b from phenoxyacetyl chloride, generously supplied by BASF AG, Ludwigshafen, Germany. For two new synthetic methods, see refs. 7c and 7d.
 - (b) L. Higginbotham and H. Stephen, J. Chem. Soc. 117, 1534 (1920).
 - (c) P. Cagniant and G. Kirsch, Comptes rendus 282C, 993 (1976).
 - (d) D.R. Amick, J. Het. Chem. 12, 1051 (1975).
- 8. (a) Compound <u>6a</u> was prepared according to Ullmann and Sponagel^{8b} from 1,3,5-tribromobenzene and phenol, m.p. 108-110 °C (lit. m.p. 110 °C, after dest. 112 °C^{9b}). Compound <u>6b</u> was prepared in the same manner from 1,3,5-tribromobenzene and p-cresol, m.p. 97-99 °C (Spengler and Koll reported^{9c} the following data: b.p. 163-169 °C/0.001 mm Hg, $n_D^{20} = 1.6073$).
 - (b) F. Ullmann and P. Sponagel, *Berichte* 38, 2211 (1905). F. Ullmann and P. Sponagel, *Ann.* 350, 102 (1906).
 - (c) G. Spengler and M. Koll, Deut. Luft.-Raumfahrt, Forschungsber. 68-86 (1968).
- 9. (a) B. Åkermark, L. Eberson, E. Jonsson and E. Petterson, J. Org. Chem. 40, 1365 (1975).
 - (b) A. Shiotani and H. Itatani. J. Chem. Soc. Perkin I, 1236 (1976) and references therein.
- 10. (a) s-Tris-2:3-benzofuranobenzene, (4a): M.p. 344-346 °C. High resolution MS gave M = 348.0780 (calculated 348.0786 for C₂₄H₁₂O₃). MS: 350 (5), 349 (27), 348 (100), 319 (5), 263 (5), 174.5 (7), 174 (21), 131.5 (7). Only peaks higher than 4% of the base peak are listed.
 - (b) s-Tris-2:3-(5-methylbenzofurano)-benzene, $(\underline{4b})$: M.p. 280-282 °C. High resolution MS gave M⁺=390.1262 (calculated 390.1256 for $C_{27}H_{18}O_3$). MS: 391 (7), 390 (24), 377 (7), 376 (24), 363 (9), 362 (34), 361 (7), 349 (26), 348 (100), 263 (7), 174.5 (7), 174 (22). Only peaks higher than 6% of the base peak are listed.

(Received in UK 16 June 1978; accepted for publication 22 June 1978)